
JOURNAL OF THE
CHUNGCHEONG MATHEMATICAL SOCIETY
Volume 35, No. 1, February 2022
http://dx.doi.org/10.14403/jcms.2022.35.1.13

EQUIVARIANT SEMIALGEBRAIC EMBEDDINGS

Dae Heui Park*

Abstract. Let G be a semialgebraic group not necessarily com-
pact. Let M be a proper semialgebraic G-set whose orbit space has
a semialgebraic structure. In this paper, we prove the embeddabil-
ity of M into a G-representation space when G is linear.

1. Introduction

In compact topological or smooth transformation group theory,
Mostow [9] and Palais [10] used the slice theorem to establish the em-
bedding of a G-space into a G-representation space. Palais extended the
slice theorem and the G-embedding theorem to proper (topological or
smooth) actions of noncompact groups. For semialgebraic transforma-
tion groups we consider semialgebraic groups G acting semialgebraically
on semialgebraic sets M , i. e., the action map θ : G×M → M is semi-
algebraic. Note that a semialgebraic set is a subset of some Rn defined
by finite number of polynomial equations and inequalities, and a semi-
algebraic map between semialgebraic sets is a map whose graph is a
semialgebraic set. See Section 2 for some basic material for semialge-
braic actions.

When G is compact, the semialgebraic slice theorem and the semial-
gebraic G-embedding theorem are also established in [4] and [16]. The
purpose of this paper is to establish semialgebraic G-embedding theorem
for proper semialgebraic G-sets. Using the slice theorem(Theorem 2.6)
and following the general scheme of the topological embedding theorem
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by Palais we have the following embedding theorem which is a restate-
ment of Theorem 4.4.

Embedding Theorem. Let G be a semialgebraic linear group, and
let M be a proper semialgebraic G-set whose orbit space has a semial-
gebraic structure. Then M can be equivariantly and semialgebraically
embedded in a G-representation space.

Here the linearity of G is not only sufficient but also necessary, see
Remark 4.5. Note that there are semialgebraic groups which are not
semialgebraically isomorphic to a semialgebraic linear group, see [8].
The embedding theorem is proved in Section 4 together with some ap-
plications.

2. Semialgebraic actions

In this section we study semialgebraic actions of semialgebraic groups
on semialgebraic sets.

The class of semialgebraic sets in Rn is the smallest collection of
subsets containing all subsets of the form {x ∈ Rn | p(x) > 0} for a
real valued polynomial p(x) = p(x1, . . . , xn), which is stable under finite
union, finite intersection and complement. A map f : M → N between
semialgebraic sets M (⊂ Rm) and N (⊂ Rn) is called a semialgebraic
map if its graph is a semialgebraic set in Rm × Rn. From now on we
impose “Euclidian topology” on semialgebraic sets and mainly consider
continuous semialgebraic maps. For the general theory of semialgebraic
sets and semialgebraic maps, we refer the reader to [1, 6].

The definition of a semialgebraic group is given obviously, i.e., a semi-
algebraic set G ⊂ Rn is called a semialgebraic group if it is a topological
group such that the group multiplication and the inversion are semi-
algebraic. A semialgebraic homomorphism between two semialgebraic
groups is a semialgebraic map that is a group homomorphism. If H is
a subgroup and semialgebraic subset, then H is called a semialgebraic
subgroup.

By a semialgebraic transformation group we mean a triple (G,M, θ),
where G is a semialgebraic group, M is a semialgebraic set, and θ : G×
M →M is a continuous semialgebraic map such that

(1) θ(g, θ(h, x)) = θ(gh, x) for all g, h ∈ G and x ∈M
(2) θ(e, x) = x for all x ∈M , where e is the identity of G.

In this case M is called a semialgebraic G-set, and θ is called the action
map. As usual we shortly write gx for θ(g, x). A semialgebraic G-subset
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of a semialgebraic G-setM is aG-invariant semialgebraic subset of M . A
continuous semialgebraic map f : M → N between semialgebraic G-sets
is called a semialgebraic G-map if it is G-equivariant, i.e., f(gx) = gf(x)
for all g ∈ G and x ∈M .

A continuous semialgebraic map f : M → N is called semialgebraically
proper if f−1(C) is compact for every compact semialgebraic subset C
of N . Since C should be semialgebraic in the definition, this notion is
weaker than the condition that f is topologically proper. But we know
that f is semialgebraically proper if and only if it is topologically proper,
see [13, 15].

Now we define semialgebraically proper actions as follows. Let G be
a semialgebraic group not necessarily compact. A semialgebraic action
of G on M is proper if the augmented action map

ϑ∗ : G×M →M ×M, (g, x) 7→ (gx, x)

is (semialgebraically) proper. In this case M is called a proper semial-
gebraic G-set. Note that when G is compact, every semialgebraic G-set
is proper.

We summarize some results about semialgebraic actions. For more
details, see [7, 14].

Proposition 2.1 ([17, 19]). (1) Every semialgebraic group has a
Lie group structure, and hence locally compact.

(2) Every semialgebraic subgroup of a semialgebraic group is closed.

Proposition 2.2. Let M be a proper semialgebraic G-set and let
x ∈M , then

(1) the isotropy subgroup Gx = {g ∈ G | g(x) = x} is compact and
semialgebraic,

(2) the orbit G(x) = {gx ∈ M | g ∈ G} is a closed semialgebraic
subset of M ,

(3) the evaluation map θx : G→M , g 7→ gx, is proper,
(4) the fixed point set MG = {x ∈ M | gx = x for all g ∈ G} is

closed semialgebraic subset of M .

Working in semialgebraic category requires a lot of nontrivial efforts
to establish some of the properties which are easy or well-known in
topological or smooth category. One of such properties is the existence
of semialgebraic structure on the orbit space of a semialgebraic G-set.
Namely, it is not quite obvious whether the orbit space M/G of a semi-
algebraic G-set M has a semialgebraic structure such that the orbit map
is semialgebraic. A semialgebraic structure of M/G is a semialgebraic
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set Y together with a semialgebraic map f : M → Y which is topologi-
cally quotient map of M of G. In this case we can substitute M/G and
the orbit map π : M → M/G with Y and f respectively. Brumfiel [3]
and Scheiderer [20] gave us a partially positive answer of this question
as follows.

Proposition 2.3 ([20]). Let G be a semialgebraic group and M a
proper semialgebraic G-set which is locally compact. Then the orbit
space M/G has a semialgebraic structure.

Note that when G is compact, M/G has a semialgebraic structure
even if M is not locally compact(see [3]).

As a specific example of a semialgebraic proper action, we consider
the following situation: let G be a semialgebraic group and H a semi-
algebraic subgroup of G. Then G can be seen as a semialgebraic set
where H acts by the right multiplication on G. So G can be seen as a
semialgebraic H-set.

Proposition 2.4 ([14]). Let G be a semialgebraic group and H a
semialgebraic subgroup of G. Then the H-space G is a proper semialge-
braic H-set, and thus G/H has a semialgebraic structure such that the
quotient map G→ G/H is semialgebraic.

Semialgebraic transformation groups have some nice properties which
are not enjoyed by general topological or smooth transformation groups.
The following theorem is one of such nice properties in semialgebraic
category.

Theorem 2.5 ([14]). Every proper semialgebraic G-set has finitely
many orbit types.

Let G be a semialgebraic group. Let M be a semialgebraic G-set and
H a semialgebraic subgroup of G. A semialgebraic subset S of M will
be called an semialgebraic H-slice if GS is an open semialgebraic subset
of M and there exists a semialgebraic G-map f : GS → G/H such that
f−1(eH) = S. For x ∈ M a semialgebraic slice at x means a semial-
gebraic Gx-slice S in M such that x ∈ S. We call GS a semialgebraic
G-tube about G(x).

Theorem 2.6 ([7]). Let G be a semialgebraic group, and let M be a
proper semialgebraic G-set whose orbit space has a semialgebraic struc-
ture. Then there exists a semialgebraic slice at every point of M . More-
over M can be covered by finitely many semialgebraic G-tubes.
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3. Semialgebraic linear groups

In this section we discuss some properties of semialgebraic linear
groups.

We say a semialgebraic group G is linear if it has a faithful real
semialgebraic representation, i.e., G is semialgebraically isomorphic to
a semialgebraic subgroup of a general linear group GLn(R) for some n.

Note that a closed subgroup of GLn(R) needs not be semialgebraic
even if it is connected. For example the following one-parameter sub-
group {(

et 0

0 e
√
2t

) ∣∣∣ t ∈ R
}

is closed but is not a semialgebraic subgroup of GL2(R). However the
following proposition shows that a compact subgroup of GLn(R) is semi-
algebraic.

Proposition 3.1. If H is a compact subgroup of GLn(R), then H
is an algebraic subgroup of GLn(R). Hence if H is a compact subgroup
of a semialgebraic linear group G, then H is a semialgebraic subgroup
of G.

Proof. See Remark 4.7 of [18].

For later use, we give the following two propositions.

Proposition 3.2 (c.f., [12, Section 3.1]). Let G be a semialgebraic
linear group, and let H be a compact (hence semialgebraic) subgroup
of G. For a semialgebraic H-module U , there exists a semialgebraic
G-module V such that resH V contains U as an H-submodule. Here
resH V denotes the restriction of the G-module V to H.

Proof. Since G is a linear group, there is a faithful representation
ϕ : G → GLn(R). Let R(G) be the R-algebra of real valued functions
on G, generated by the matrix entries aij : G→ R for ϕ : G→ GLn(R),
ϕ(g) = (aij(g)). Note that R(G) has a G-module structure as follows:
for f ∈ R(G) and g, h ∈ G, g ·f(h) = f(g−1h). R(H) is defined similarly.
Since H is compact, R(H) is the R-algebra of all representative functions
on H, see [2, Proposition III. (4.3)]. Let R(G)|H be the restrictions of
the functions in R(G) to H, i.e.,

R(G)|H = {f |H : H → R | f ∈ R(G)}.
Since R(G) is generated by the matrix entries aij we can see that every
element f ∈ R(G) generates a finite dimensional G-invariant subspace of
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the vector space C0(G,R) = {f : G → R | f is a continuous function}.
Therefore a fortiori every element f |H ∈ R(G)|H generates a finite di-
mensional H-invariant subspace of C0(H,R), i.e., f |H is a representative
function on H. This shows that R(G)|H ⊂ R(H). Since ϕ is a faithful
representation, R(G) separates points of G, so a fortiori R(G)|H sepa-
rates points of H. By the Stone-Weierstrass theorem R(G)|H is dense
in the space C0(H,R). Since R(G)|H is closed in R(H) by III.1.4 of [2],
R(G)|H = R(H).

Without loss of generality, we may assume that U is an irreducible H-
module. Then there exists an H-invariant submodule of R(H) which is
isomorphic to U (see [2, III.1.5]), and we identify this submodule with U .
Let {f1, . . . , fk} be a basis for U and choose hi ∈ p−1(fi) for i = 1, . . . , k
where p : R(G)→ R(H) is the restriction map. Let V be the G-invariant
subspace of R(G) generated by {h1, . . . , hk}. Then since every element of
R(G) generates a finite dimensional G-invariant subspace of R(G), V is
a finite dimensional G-module. Moreover from the construction resH V
contains U as an irreducible H-submodule. Therefore it is enough to
show that V is a semialgebraic G-module. Let W be the G-module
defined by the faithful semialgebraic representation ϕ : G → GLn(R).
Since ϕ is semialgebraic, W is a semialgebraic G-module.

Note that the elements of V are consist of sum of products of {aij}.
Consider a semialgebraic G-module

T =
k⊕

n=0

((W ∗ ⊗W )⊗ · · · ⊗ (W ∗ ⊗W ))

for some k. Mapping e∗i ⊗ej 7→ aij defines a G-map from Ψ: T → R(G).
By taking sufficiently large k we can assume V is contained in Ψ(T ).
Then, since Ψ(T ) is semialgebraic, V is semialgebraic.

The following proposition is the semialgebraic analogue of the re-
sult in Section 3.2 of [12], and the proof of it is simply the verbatim
semialgebraic translation of the topological proof in the cited reference.
Therefore we may skip the proof of the following proposition.

Proposition 3.3. Let G be a semialgebraic linear group, and let
H be a compact subgroup of G. Then there exists a semialgebraic G-
module V and a point v ∈ V such that the isotropy subgroup Gv at v
is equal to H.
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4. Equivariant semialgebraic embeddings

In this section we prove the semialgebraic embedding of proper semi-
algebraic G-sets into a finite dimensional semialgebraic G-representation
space. The general scheme of the proof follows the idea of Palais em-
bedding theorem of proper topological G-spaces in [12]. When G is a
compact semialgebraic linear group, the semialgebraic embedding theo-
rem is proved in [4] and [16] in two different ways. Here we extend the
method in [4] to a semialgebraic linear group which is not necessarily
compact.

Lemma 4.1. Let G be a semialgebraic group and M a proper semi-
algebraic G-set. If M −MG admits an equivariant semialgebraic em-
bedding in some semialgebraic representation space of G then so does
M .

Proof. If G is noncompact, then MG is empty, there is nothing to
prove. So we assume G is compact. Moreover, in this case, we can as-
sume that the representation is orthogonal. Let M be a semialgebraic
subset of Rn and M/G a semialgebraic subset of Rk. We define a semial-
gebraic map h : M/G→ R by h(z) = dist(z,MG/G) = inf{‖z− y‖ | y ∈
MG/G}. Then the composition map h̃ = h◦π : M → R is semialgebraic
and G-invariant. Let f : M−MG → Ω be a semialgebraic G-embedding.

Moreover, we can assume ‖f(x)‖ = 1 for all x ∈ M − MG: let v
be a non-zero real number. Clearly the map ψ : Ω → Ω ⊕ R defined by
ψ(x) = (x, v) is a semialgebraic G-embedding. Define ϕ : Ω → Ω ⊕ R
by ϕ(x) = ψ(x)/‖ψ(x)‖, then ϕ ◦ f is the desired semialgebraic G-
embedding.

So we assume ‖f(x)‖ = 1 for all x ∈M −MG and define f̃ : M → Ω
by

f̃(x) =

{
h̃(x)f(x) if x ∈M −MG

0 if x ∈MG.

That f̃ is clearly a semialgebraic G-map. Now we define φ : M → Rk⊕Ω
by φ(x) = (π(x), f̃(x)) where Rk denote k-dimensional trivial real G-
representation space. Then φ can be shown to be continuous (see [11,
p.22]). Hence φ is a semialgebraic G-embedding.

Lemma 4.2. Let G be a semialgebraic group and let M be a proper
semialgebraic G-set whose orbit space has a semialgebraic structure.
Let {U1, . . . , Uk} be a covering of M by open semialgebraic G-subsets of
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M . If each Ui admits a semialgebraic G-embedding in a semialgebraic
G-representation space Ωi then so does M .

Proof. Let π : M →M/G be the semialgebraic orbit map. Let U∗i =
π(Ui) and let h∗1, . . . , h

∗
k : M/G → [0, 1] be a semialgebraic partition

of unity subordinate to U∗1 , . . . , U
∗
k (see [5, Theorem 1.6]). Define a

semialgebraic G-invariant map hi : M → [0, 1] by hi = h∗i ◦ π.

Let φi : Ui → Ωi be semialgebraic G-embeddings. Now we define
continuous semialgebraic G-maps ϕi : M → Ωi by

ϕi(x) =

{
hi(x)φi(x) if x ∈ Ui

0 if x /∈ Ui.

Let Rk denote k-dimensional trivial real G-representation space. Then
the map ϕ0 : M → Rk defined by ϕ0(x) = (h1(x), . . . , hk(x)) is a semi-
algebraic G-invariant map. The map

ϕ : M → Rk ⊕ Ω1 · · · ⊕ Ωk, x 7→ (ϕ0(x), ϕ1(x), . . . , ϕk(x))

is a G-embedding(see [11] or [12] for the detail). Hence ϕ is a desired
semialgebraic G-embedding.

Lemma 4.3. Let G be a semialgebraic linear group and H a compact
semialgebraic subgroup of G. If Ω is a semialgebraic H-representation
space then there exists a semialgebraic H-embedding of Ω onto a semi-
algebraic H-slice in some semialgebraic G-representation space Ξ.

Proof. By Proposition 3.2, there is a semialgebraic G-representa-
tion space Ω′ which includes Ω as an H-invariant linear subspace. By
Proposition 3.3, there exist a semialgebraic G-representation space Ξ′

and a point u0( 6= 0) of Ξ′ such that Gu0 = H. Set Ξ = Ξ′ ⊕ Ω′.
Then Ξ is a semialgebraic G-representation space. Clearly the map
ϕ : Ω ↪→ Ξ = Ξ′ ⊕ Ω′ defined by ϕ(v) = (u0, v) is a semialgebraic H-
embedding. We claim that the image S = ϕ(Ω) is an H-slice in GS.
To construct a continuous semialgebraic G-map f : GS → G(u0) with
f−1(u0) = S, consider the projection map Ξ = Ξ′⊕Ω′ → Ξ′ which is ob-
viously G-equivariant. Take f as the restriction on GS of the projection
map, then its image is clearly G(u0). Moreover if g /∈ H and (u0, v) ∈ S
then g(u0, v) = (gu0, gv) /∈ S because g /∈ H = Gu0 . This leads to the
equality f−1(u0) = S, now the proof is complete.

We now prove the embedding theorem for proper semialgebraic ac-
tions.
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Theorem 4.4 (Embedding Theorem). Let G be a semialgebraic lin-
ear group, and let M be a proper semialgebraic G-set whose orbit space
M/G has a semialgebraic structure. Then M can be equivariantly
and semialgebraically embedded in a finite dimensional semialgebraic
G-representation space.

Proof. By the induction argument, we can assume that the theorem
is true for all proper semialgebraic subgroups of G. By Lemma 4.1 it
suffices to show that the semialgebraic G-set M−MG admits a semialge-
braic G-embedding in a semialgebraic G-representation space. By The-
orem 2.6 there are a finite number of semialgebraic Hi-slices S1, . . . , Sk
of M −MG such that GS1, . . . , GSk cover M −MG. Since each Hi is
a strictly smaller compact subgroup of G, by the induction hypothesis,
there is a semialgebraic Hi-embedding ϕi : Si → Ωi in a semialgebraic
Hi-representation space Ωi. By Lemma 4.3, there exists a semialgebraic
Hi-embedding ψi of Ωi onto a semialgebraic Hi-slice in some semialge-
braic G-representation space Ξi. Then the map fi : GSi → Ξi, defined
by fi(gs) = gψi(ϕi(s)), is a semialgebraic G-embedding. Since each
GSi is a G-invariant open semialgebraic subset in M , by Lemma 4.2,
M − MG admits a semialgebraic G-embedding in a semialgebraic G-
representation space.

Remark 4.5. The linearity condition of the semialgebraic group is
necessary as well as sufficient if the action is effective. Indeed, let G be a
semialgebraic group and let M be equal to G viewed as a semialgebraic
G-set with the left multiplication. If M has a semialgebraic embedding
f : M → Rn(ρ) for some semialgebraic representation space Rn(ρ) of G,
it follows that G acts effectively on Rn(ρ), i.e. ρ is faithful, so that G is
a semialgebraic linear group. Moreover there is a compact semialgebraic
group which is not linear(see [16]).

Any locally compact semialgebraic set can be semialgebraically em-
bedded in some Rn as a closed semialgebraic subset, see [5, 6]. Now we
have the similar result for semialgebraic proper linear actions.

Corollary 4.6. Let G be a semialgebraic linear group. Then every
locally compact proper semialgebraic G-set can be equivariantly and
semialgebraically embedded in some semialgebraic representation space
Ω of G as a closed semialgebraic G-subset of Ω.

Proof. Let M be a locally compact proper semialgebraic G-set. By
Theorem 4.4, we can view M as a semialgebraic G-subset of a semialge-
braic G-representation space Ω′.
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Set A = M −M where M is the closure of M in Ω′. Since M is
locally compact, A is a closed semialgebraic subset of Ω′ (see [5, Propo-
sition 3.3]). We may assume A 6= ∅ unless M is already closed. The
map f : Ω′ → R, defined by, f(x) = dist(x,A), is semialgebraic. Define
a semialgebraic embedding ϕ : M → Ω′⊕R by ϕ(x) = (x, 1/f(x)). Since
Ω′ is a G-representation, ϕ is a G-map. Clearly, the image of ϕ is the
closed semialgebraic set defined by

{(x, y) ∈ Ω′ ⊕ R | x ∈M, yf(x) = 1}.

Corollary 4.7. Let G be a semialgebraic linear group. Then every
proper semialgebraic G-manifold can be equivariantly and semialgebra-
ically embedded in some semialgebraic representation space Ω of G as a
closed semialgebraic G-subset of Ω.

Proof. It is immediate from Corollary 4.6 since every semialgebraic
manifold is locally compact.

Corollary 4.8. Let G be a semialgebraic linear group. If M is a
locally compact proper semialgebraic G-set, then there exists a semial-
gebraic one point G-compactification of M .

Proof. By Corollary 4.6, we may assume that M is a closed semi-
algebraic G-subset of some semialgebraic representation space Ω of G.
We may assume that 0 /∈ M because otherwise we can replace M by
M × {1} ⊂ Ω⊕ R. Let τ : Ω− {0} → Ω− {0} be the inversion through
the unit sphere, τ(x) = x/‖x‖2. Clearly τ is a semialgebraic homeomor-
phism, and thus τ(M) ∪ {0} is a semialgebraic set in Ω. From this we
can see that τ(M)∪{0} is the desired compact semialgebraic G-set.

Remark 4.9. In the above corollary, if G is not compact, then the
action of G on the one-point compactification is no more proper.
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